Home > src > main > matlab > flaglet_plot_axisym_tilling.m

flaglet_plot_axisym_tilling

PURPOSE ^

flaglet_plot_axisym_tilling - Plot tilling in harmonic space.

SYNOPSIS ^

function flaglet_plot_axisym_tilling(B_l, B_n, L, N, J_min_l, J_min_n)

DESCRIPTION ^

 flaglet_plot_axisym_tilling - Plot tilling in harmonic space.
 -- Axisymmetric wavelets on the solid sphere.

 Default usage :

   flaglet_plot_axisym_tilling(B_l, B_n, L, N, J_min_l, J_min_n)

 B_l is the wavelet parameter for angular space,
 B_n is the wavelet parameter for radial space,
 L is the angular band-limit,
 N is the radial band-limit,
 J_min_l the first angular wavelet scale to use,
 J_min_n the first radial wavelet scale to use.

 B3LET package to perform Wavelet transform on the Solid Sphere.
 Copyright (C) 2012  Boris Leistedt & Jason McEwen
 See LICENSE.txt for license details

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function flaglet_plot_axisym_tilling(B_l, B_n, L, N, J_min_l, J_min_n)
0002 
0003 % flaglet_plot_axisym_tilling - Plot tilling in harmonic space.
0004 % -- Axisymmetric wavelets on the solid sphere.
0005 %
0006 % Default usage :
0007 %
0008 %   flaglet_plot_axisym_tilling(B_l, B_n, L, N, J_min_l, J_min_n)
0009 %
0010 % B_l is the wavelet parameter for angular space,
0011 % B_n is the wavelet parameter for radial space,
0012 % L is the angular band-limit,
0013 % N is the radial band-limit,
0014 % J_min_l the first angular wavelet scale to use,
0015 % J_min_n the first radial wavelet scale to use.
0016 %
0017 % B3LET package to perform Wavelet transform on the Solid Sphere.
0018 % Copyright (C) 2012  Boris Leistedt & Jason McEwen
0019 % See LICENSE.txt for license details
0020 
0021 [kappa kappa0] = flaglet_axisym_tilling(B_l, B_n, L, N, J_min_l, J_min_n);
0022 [kappa_l kappa0_l] = s2let_axisym_tilling_mex(B_l, L, J_min_l);
0023 [kappa_n kappa0_n] = s2let_axisym_tilling_mex(B_n, N, J_min_n);
0024 
0025 J_l = s2let_jmax(L, B_l);
0026 J_n = s2let_jmax(N, B_n);
0027 
0028 figure('Position',[100 100 1000 1000])%figure('Position',[1 1 1000 1000])
0029 
0030 colours_n = zeros((J_n+2),3);
0031 hax = axes('Position', [.05, .05, .27, .55]);
0032 colours_n(1,:) = rand(1,3)*0.8+0.2;
0033 plot(0:N-1, kappa0_n, 'k', 'LineWidth', 4, 'Color', colours_n(1,:));
0034 hold on;
0035 for jn = J_min_n:J_n  
0036   colours_n(jn+2,:) = rand(1,3)*0.8+0.2;
0037   plot(0:N-1, kappa_n(jn+1,:), 'LineWidth', 4, 'Color', colours_n(jn+2,:));
0038 end
0039 set(gca,'FontSize',20);
0040 axis([0 N-1 0 1.2])
0041 set(gca,'YTick',[0 1]);
0042 set(gca,'LineWidth',4);
0043 %xlabel('x1')
0044 %ylabel('y1')
0045 view(-90,90)
0046 %hold off
0047 
0048 colours_l = zeros((J_l+2),3);
0049 hax = axes('Position', [.40, .67, .55, .27]);
0050 colours_l(1,:) = rand(1,3)*0.8+0.2;
0051 plot(0:L-1, kappa0_l, 'k', 'LineWidth', 4, 'Color', colours_l(1,:));
0052 hold on;
0053 for jl = J_min_l:J_l
0054   colours_l(jl+2,:) = rand(1,3)*0.8+0.2;
0055   plot(0:L-1, kappa_l(jl+1,:), 'LineWidth', 4, 'Color', colours_l(jl+2,:));
0056 end
0057 set(gca,'FontSize',20);
0058 set(gca,'YTick',[0 1]);
0059 set(gca,'LineWidth',4);
0060 %xlabel('x2')
0061 %ylabel('y2')
0062 axis([0 L-1 0 1.2])
0063 hold off
0064 
0065 colours = zeros((J_l+1)*(J_n+1),3);
0066 
0067 %figure('Position',[100 100 1000 1000])
0068 
0069 hax = axes('Position', [.40, .05, .54, .55]);
0070 colour = 0.5* colours_n(1,:).*colours_l(1,:);
0071 surf(0:L-1, 0:N-1, kappa0, 'FaceColor', colour, 'EdgeColor', 'none');%,'FaceAlpha','flat', ...
0072         %'AlphaDataMapping','none','AlphaData',(kappa0));
0073 hold on;
0074 for jl = J_min_l:J_l 
0075     for jn = J_min_n:J_n 
0076         temp = kappa{jl+1,jn+1};
0077         colours((jn)*(J_l+1)+jl+1,:) = colours_n(jn+2,:).*colours_l(jl+2,:);%rand(1,3)*0.9;
0078         surf(0:L-1, 0:N-1, temp, 'FaceColor', colours((jn)*(J_l+1)+jl+1,:), 'EdgeColor', 'none');%,'FaceAlpha','flat', ...
0079         %'AlphaDataMapping','none','AlphaData',(temp));
0080     end
0081 end
0082 surf(0:L-1, 0:N-1, zeros(N,L), 'FaceColor', 'black','EdgeColor', 'none')
0083 axis([0 L-1 0 N-1 0 1.2])
0084 %xlabel('x3')
0085 %ylabel('y3')
0086 set(gca,'FontSize',20);
0087 set(gca,'LineWidth',4);
0088 view(0,90)
0089 colormap jet
0090 %alpha(.6)
0091 hold off
0092 
0093 hax = axes('Position', [.05, .65, .3, .3]);
0094 surf(0:L-1, 0:N-1, kappa0, 'FaceColor', colour, 'EdgeColor', 'none');%,'FaceAlpha','flat', ...
0095         %'AlphaDataMapping','none','AlphaData',(kappa0));
0096 hold on;
0097 for jl = J_min_l:J_l 
0098     for jn = J_min_n:J_n 
0099         temp = kappa{jl+1,jn+1};
0100         surf(0:L-1, 0:N-1, temp, 'FaceColor', colours((jn)*(J_l+1)+jl+1,:), 'EdgeColor', 'none');%,'FaceAlpha','flat', ...
0101         %'AlphaDataMapping','none','AlphaData',(temp));
0102     end
0103 end
0104 surf(0:L-1, 0:N-1, zeros(N,L), 'FaceColor', 'black','EdgeColor', 'none')
0105 axis([0 L-1 0 N-1 0 1.2])
0106 view(135,45)
0107 set(gca,'FontSize',20);
0108 set(gca,'LineWidth',4);
0109 %xlabel('x4')
0110 %ylabel('y4')
0111 colormap hot(256)
0112 %=alpha(.6)
0113 hold off
0114 
0115 end

Generated on Mon 24-Sep-2012 12:26:33 by m2html © 2005