- class darkmappy.estimators.DarkMappyPlane(n, data=None, mask=None, ngal=None, viewer=None, wav=['db6'], levels=4, supersample=1, psi=None, constrained=True)
Frontend class which handles dark matter reconstruction.
This class currently supports the planar lensing forward model, a selection of sparsity priors, for Gaussian and Poissonian noise models.
- __init__(n, data=None, mask=None, ngal=None, viewer=None, wav=['db6'], levels=4, supersample=1, psi=None, constrained=True)
Construct class to create and hold the MAP estimator
- Parameters
n (int) – Pixel count along each axis (square image)
data (complex array) – Pixelised map of shear observations.
mask (int array) – Map of realspace masking.
ngal (int array) – Map of galaxy observation count.
wavs (list) – Wavelet dictionaries to use.
levels (int) – Number of levels within each wavelet dictionary.
supersample (float) – Amount of supersampling.
psi (linear operator) – Sparsifying dictionary.
constrained (boolean) – Constrained or unconstrained optimisation
- Raises
ValueError – Raised if n is not positive.
ValueError – Raised if mask is the wrong shape.
ValueError – Raised if no data provided.
WarningLog – Raised if no galaxy number density map provided.
WarningLog – Raised if no masking map provided.
WarningLog – Raised if n is very large.
WarningLog – Raised if N is very large.
- normalise_phi()
Power method normalisation of forward-model
- run_estimator(mu=0.001, sigma=1)
Performs maximum a posteriori inference via proximal primal dual solver.
- Parameters
mu (float) – Regularisation parameter of problem.
sigma (float) – Whitened noise level of problem.
- class darkmappy.estimators.DarkMappySphere(L, N=1, data=None, mask=None, ngal=None, viewer=None, psi=None, constrained=True)
Frontend class which handles dark matter reconstruction.
This class currently supports the spherical lensing forward model, a selection of sparsity priors, for Gaussian and Poissonian noise models.
- __init__(L, N=1, data=None, mask=None, ngal=None, viewer=None, psi=None, constrained=True)
Construct class to create and hold the MAP estimator
- Parameters
L (int) – Spherical harmonic bandlimit.
N (int) – Directionality of wavelet dictionary.
data (complex array) – Pixelised map of shear observations.
mask (int array) – Map of realspace masking.
ngal (int array) – Map of galaxy observation count.
psi (linear operator) – Sparsifying dictionary.
constrained (boolean) – Constrained or unconstrained optimisation
- Raises
ValueError – Raised if L is not positive.
ValueError – Raised if mask is the wrong shape.
ValueError – Raised if no data provided.
WarningLog – Raised if no galaxy number density map provided.
WarningLog – Raised if no masking map provided.
WarningLog – Raised if L is very large.
WarningLog – Raised if N is very large.
- normalise_phi()
Power method normalisation of forward-model
- run_estimator(mu=0.001, sigma=1)
Performs maximum a posteriori inference via proximal primal dual solver.
- Parameters
mu (float) – Regularisation parameter of problem.
sigma (float) – White noise level of problem.