class darkmappy.wavelet_wrappers.S2letWavelets(L, B=2, J_min=0, N=1, forward_transform=True, upsample=0)

Linear operator wrapper for Spherical wavelet transforms using pys2let.

All variations of the wavelet transform are supported.

__init__(L, B=2, J_min=0, N=1, forward_transform=True, upsample=0)

Construct Spherical Wavelet transform class to hold all forward, inverse, and corresponding adjoint wavelet transforms.

Parameters
  • L (int) – Spherical harmonic bandlimit

  • B (int) – Wavelet tiling spread (2 = dyadic)

  • J_min (int) – Smallest wavelet scale

  • N (int) – directional samples (wigner space)

  • upsample (bint) – downscale wavelet scale maps.

  • Reality (bint) – Reality of signal.

Raises
  • ValueError – Raised if L is not positive

  • ValueError – Raised if B is less than 1.

  • ValueError – Raised if N is less than 1.

  • ValueError – Raised if N or B is more than L.

  • WarningLog – Raised if L is very large.

forward(f, spin=0)

Compute the forward spherical wavelet transform.

Parameters
  • f (np.complexarray) – Realspace Signal

  • spin (int) – spin of field f

Raises

ValueError – Raised if signal is nan

forward_adjoint(fws, spin=0)

Compute the forward_adjoint spherical wavelet transform.

Parameters
  • f_ws (np.complexarray) – Wavelet + scaling coefficients

  • spin (int) – spherical harmonic spin

Raises
  • ValueError – Raised if wavelet coefficients nan

  • ValueError – Raised if scaling coefficients nan

inverse(fws, spin=0)

Compute the inverse spherical wavelet transform.

Parameters
  • f_ws (np.complexarray) – Wavelet + scaling coefficients

  • spin (int) – spherical harmonic spin

Raises
  • ValueError – Raised if wavelet coefficients nan

  • ValueError – Raised if scaling coefficients nan

inverse_adjoint(f, spin=0)

Compute the inverse adjoint spherical wavelet transform.

Parameters
  • f (np.complexarray) – Realspace Signal

  • spin (int) – spin of field f

Raises

ValueError – Raised if signal is nan