- class darkmappy.wavelet_wrappers.S2letWavelets(L, B=2, J_min=0, N=1, forward_transform=True, upsample=0)
Linear operator wrapper for Spherical wavelet transforms using pys2let.
All variations of the wavelet transform are supported.
- __init__(L, B=2, J_min=0, N=1, forward_transform=True, upsample=0)
Construct Spherical Wavelet transform class to hold all forward, inverse, and corresponding adjoint wavelet transforms.
- Parameters
L (int) – Spherical harmonic bandlimit
B (int) – Wavelet tiling spread (2 = dyadic)
J_min (int) – Smallest wavelet scale
N (int) – directional samples (wigner space)
upsample (bint) – downscale wavelet scale maps.
Reality (bint) – Reality of signal.
- Raises
ValueError – Raised if L is not positive
ValueError – Raised if B is less than 1.
ValueError – Raised if N is less than 1.
ValueError – Raised if N or B is more than L.
WarningLog – Raised if L is very large.
- forward(f, spin=0)
Compute the forward spherical wavelet transform.
- Parameters
f (np.complexarray) – Realspace Signal
spin (int) – spin of field f
- Raises
ValueError – Raised if signal is nan
- forward_adjoint(fws, spin=0)
Compute the forward_adjoint spherical wavelet transform.
- Parameters
f_ws (np.complexarray) – Wavelet + scaling coefficients
spin (int) – spherical harmonic spin
- Raises
ValueError – Raised if wavelet coefficients nan
ValueError – Raised if scaling coefficients nan
- inverse(fws, spin=0)
Compute the inverse spherical wavelet transform.
- Parameters
f_ws (np.complexarray) – Wavelet + scaling coefficients
spin (int) – spherical harmonic spin
- Raises
ValueError – Raised if wavelet coefficients nan
ValueError – Raised if scaling coefficients nan
- inverse_adjoint(f, spin=0)
Compute the inverse adjoint spherical wavelet transform.
- Parameters
f (np.complexarray) – Realspace Signal
spin (int) – spin of field f
- Raises
ValueError – Raised if signal is nan