Package sleplet
Documentation of the SLEPLET
package. The
API documentation
is included at the end of this page.
Background
Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions.
Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data.
Bandlimit
The bandlimit is set as L
throughout the code and the CLIs. The default value
is set to L=16
and the figures created in the figure section
all use L=128
. The pre-computed data exists on
Zenodo for powers of two up to
L=128
. Other values will be computed when running the appropriate code (and
saved for future use). Note that beyond L=32
the code can be slow due to the
difficulties of computing the Slepian matrix prior to the eigendecomposition, as
such it is recommended to stick to the powers of two up to L=128
.
Environment Variables
NCPU
: sets the number of cores to use
When it comes to selecting a Slepian region the order precedence is
polar cap region >
limited latitude longitude region >
arbitrary region. The default region is the south_america
arbitrary region.
POLAR_GAP
: for a Slepianpolar cap region
, when set in conjunction withTHETA_MAX
but without the otherPHI
/THETA
variablesTHETA_MAX
: for a Slepianpolar cap region
, when set without the otherPHI
/THETA
variables OR for a Slepianlimited latitude longitude region
THETA_MIN
: for a Slepianlimited latitude longitude region
PHI_MAX
: for a Slepianlimited latitude longitude region
PHI_MIN
: for a Slepianlimited latitude longitude region
SLEPIAN_MASK
: for an arbitrary Slepian region, currentlyafrica
/south_america
supported
Paper Figures
To recreate the figures from the below papers, one may use the CLI or the API.
For those which don't use the mesh
or sphere
CLIs, the relevant API code
isn't provided as it is contained within the
examples folder.
Sifting Convolution on the Sphere
Sifting Convolution on the Sphere: Fig. 1
for ell in $(seq 2 -1 1); do
sphere harmonic_gaussian -a 0.75 -b 0.125 -e ${ell} 1 -L 128 -m translate -o
done
import numpy as np
import pyssht as ssht
import sleplet
for ell in range(2, 0, -1):
f = sleplet.functions.HarmonicGaussian(
128,
l_sigma=10**ell,
m_sigma=10,
)
flm = f.translate(
alpha=0.75 * np.pi,
beta=0.125 * np.pi,
)
f_sphere = ssht.inverse(
flm,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_1_ell_{ell}",
annotations=[],
).execute()
Sifting Convolution on the Sphere: Fig. 2
sphere earth -L 128
import pyssht as ssht
import sleplet
f = sleplet.functions.Earth(
128,
)
flm = sleplet.harmonic_methods.rotate_earth_to_south_america(
f.coefficients,
f.L,
)
f_sphere = ssht.inverse(
flm,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_2",
).execute()
Sifting Convolution on the Sphere: Fig. 3
for ell in $(seq 2 -1 1); do
sphere harmonic_gaussian -c earth -e ${ell} 1 -L 128
done
import pyssht as ssht
import sleplet
for ell in range(2, 0, -1):
f = sleplet.functions.HarmonicGaussian(
128,
l_sigma=10**ell,
m_sigma=10,
)
g = sleplet.functions.Earth(
128,
)
flm = f.convolve(
f.coefficients,
g.coefficients.conj(),
)
flm_rot = sleplet.harmonic_methods.rotate_earth_to_south_america(
flm,
f.L,
)
f_sphere = ssht.inverse(
flm_rot,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_3_ell_{ell}",
).execute()
Slepian Scale-Discretised Wavelets on the Sphere
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 2
python -m examples.arbitrary.south_america.tiling_south_america
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 3
export SLEPIAN_MASK="south_america"
# a
sphere earth -L 128 -s 2 -u
# b
sphere slepian_south_america -L 128 -s 2 -u
import pyssht as ssht
import sleplet
# a
f = sleplet.functions.Earth(
128,
smoothing=2,
)
flm = sleplet.harmonic_methods.rotate_earth_to_south_america(
f.coefficients,
f.L,
)
f_sphere = ssht.inverse(
flm,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_3_a",
normalise=False,
).execute()
# b
region = sleplet.slepian.Region(
mask_name="south_america",
)
g = sleplet.functions.SlepianSouthAmerica(
128,
region=region,
smoothing=2,
)
g_sphere = sleplet.slepian_methods.slepian_inverse(
g.coefficients,
g.L,
g.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
g_sphere,
g.L,
"fig_3_b",
normalise=False,
region=g.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 4
export SLEPIAN_MASK="south_america"
for p in 0 9 24 49 99 199; do
sphere slepian -e ${p} -L 128 -u
done
import sleplet
region = sleplet.slepian.Region(mask_name="south_america")
for p in [0, 9, 24, 49, 99, 199]:
f = sleplet.functions.Slepian(
128,
region=region,
rank=p,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_4_p_{p}",
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 5
python -m examples.arbitrary.south_america.eigenvalues_south_america
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 6
export SLEPIAN_MASK="south_america"
# a
sphere slepian_wavelets -L 128 -u
# b-f
for j in $(seq 0 4); do
sphere slepian_wavelets -e 3 2 ${j} -L 128 -u
done
import sleplet
region = sleplet.slepian.Region(mask_name="south_america")
for j in [None, *list(range(5))]:
f = sleplet.functions.SlepianWavelets(
128,
region=region,
B=3,
j_min=2,
j=j,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_6_j_{j}",
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 7
export SLEPIAN_MASK="south_america"
# a
sphere slepian_wavelet_coefficients_south_america -L 128 -s 2 -u
# b-f
for j in $(seq 0 4); do
sphere slepian_wavelet_coefficients_south_america -e 3 2 ${j} -L 128 -s 2 -u
done
import sleplet
region = sleplet.slepian.Region(
mask_name="south_america",
)
for j in [None, *list(range(5))]:
f = sleplet.functions.SlepianWaveletCoefficientsSouthAmerica(
128,
region=region,
B=3,
j_min=2,
j=j,
smoothing=2,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_7_j_{j}",
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 8
export SLEPIAN_MASK="south_america"
# a
sphere slepian_south_america -L 128 -n -10 -s 2 -u
# b-d
for s in 2 3 5; do
python -m examples.arbitrary.south_america.denoising_slepian_south_america \
-n -10 -s ${s}
done
import sleplet
# a
region = sleplet.slepian.Region(
mask_name="south_america",
)
f = sleplet.functions.SlepianSouthAmerica(
128,
region=region,
noise=-10,
smoothing=2,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
amplitude = sleplet.plot_methods.compute_amplitude_for_noisy_sphere_plots(
f,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_8_a",
amplitude=amplitude,
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 9
export SLEPIAN_MASK="africa"
# a
sphere earth -L 128 -p africa -s 2 -u
# b
sphere slepian_africa -L 128 -s 2 -u
import pyssht as ssht
import sleplet
# a
f = sleplet.functions.Earth(
128,
smoothing=2,
)
flm = sleplet.harmonic_methods.rotate_earth_to_africa(
f.coefficients,
f.L,
)
f_sphere = ssht.inverse(
flm,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(f_sphere, f.L, "fig_9_a", normalise=False).execute()
# b
region = sleplet.slepian.Region(
mask_name="africa",
)
g = sleplet.functions.SlepianAfrica(
128,
region=region,
smoothing=2,
)
g_sphere = sleplet.slepian_methods.slepian_inverse(
g.coefficients,
g.L,
g.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
g_sphere,
g.L,
"fig_9_b",
normalise=False,
region=g.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 10
python -m examples.arbitrary.africa.eigenvalues_africa
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 11
export SLEPIAN_MASK="africa"
for p in 0 9 24 49 99 199; do
sphere slepian -e ${p} -L 128 -u
done
import sleplet
region = sleplet.slepian.Region(
mask_name="africa",
)
for p in [0, 9, 24, 49, 99, 199]:
f = sleplet.functions.Slepian(
128,
region=region,
rank=p,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_11_p{p}",
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 12
export SLEPIAN_MASK="africa"
# a
sphere slepian_wavelets -L 128 -u
# b
for j in $(seq 0 5); do
sphere slepian_wavelets -e 3 2 ${j} -L 128 -u
done
import sleplet
region = sleplet.slepian.Region(mask_name="africa")
for j in [None, *list(range(6))]:
f = sleplet.functions.SlepianWavelets(
128,
region=region,
B=3,
j_min=2,
j=j,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_12_j_{j}",
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 13
export SLEPIAN_MASK="africa"
# a
sphere slepian_wavelet_coefficients_africa -L 128 -s 2 -u
# b
for j in $(seq 0 5); do
sphere slepian_wavelet_coefficients_africa -e 3 2 ${j} -L 128 -s 2 -u
done
import sleplet
region = sleplet.slepian.Region(mask_name="africa")
for j in [None, *list(range(6))]:
f = sleplet.functions.SlepianWaveletCoefficientsAfrica(
128,
region=region,
B=3,
j_min=2,
j=j,
smoothing=2,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_13_j_{j}",
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on the Sphere: Fig. 14
export SLEPIAN_MASK="africa"
# a
sphere slepian_africa -L 128 -n -10 -s 2 -u
# b-d
for s in 2 3 5; do
python -m examples.arbitrary.africa.denoising_slepian_africa -n -10 -s ${s}
done
import sleplet
# a
region = sleplet.slepian.Region(
mask_name="africa",
)
f = sleplet.functions.SlepianAfrica(
128,
region=region,
noise=-10,
smoothing=2,
)
f_sphere = sleplet.slepian_methods.slepian_inverse(
f.coefficients,
f.L,
f.slepian,
)
amplitude = sleplet.plot_methods.compute_amplitude_for_noisy_sphere_plots(
f,
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_14_a",
amplitude=amplitude,
normalise=False,
region=f.region,
).execute()
Slepian Scale-Discretised Wavelets on Manifolds
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 2
for r in $(seq 2 9); do
mesh homer -e ${r} -u
done
import sleplet
mesh = sleplet.meshes.Mesh("homer")
for r in range(2, 10):
f = sleplet.meshes.MeshBasisFunctions(
mesh,
rank=r,
)
f_mesh = sleplet.harmonic_methods.mesh_inverse(
f.mesh,
f.coefficients,
)
# creates surface plot on a mesh
sleplet.plotting.PlotMesh(
mesh,
f"fig_2_r_{r}",
f_mesh,
normalise=False,
).execute()
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 4
python -m examples.mesh.mesh_tiling homer
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 5
python -m examples.mesh.mesh_region homer
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 6
for p in 0 9 24 49 99 199; do
mesh homer -m slepian_functions -e ${p} -u -z
done
import sleplet
mesh = sleplet.meshes.Mesh("homer", zoom=True)
for p in [0, 9, 24, 49, 99, 199]:
f = sleplet.meshes.MeshSlepianFunctions(
mesh,
rank=p,
)
f_mesh = sleplet.slepian_methods.slepian_mesh_inverse(
f.mesh_slepian,
f.coefficients,
)
# creates surface plot on a mesh
sleplet.plotting.PlotMesh(
mesh,
f"fig_6_p_{p}",
f_mesh,
normalise=False,
region=True,
).execute()
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 7
python -m examples.mesh.mesh_slepian_eigenvalues homer
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 8
# a
mesh homer -m slepian_wavelets -u -z
# b-f
for j in $(seq 0 4); do
mesh homer -e 3 2 ${j} -m slepian_wavelets -u -z
done
import sleplet
mesh = sleplet.meshes.Mesh("homer", zoom=True)
for j in [None, *list(range(5))]:
f = sleplet.meshes.MeshSlepianWavelets(
mesh,
B=3,
j_min=2,
j=j,
)
f_mesh = sleplet.slepian_methods.slepian_mesh_inverse(
f.mesh_slepian,
f.coefficients,
)
# creates surface plot on a mesh
sleplet.plotting.PlotMesh(
mesh,
f"fig_8_j_{j}",
f_mesh,
normalise=False,
region=True,
).execute()
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 9
mesh homer -m field -u
import sleplet
mesh = sleplet.meshes.Mesh(
"homer",
)
f = sleplet.meshes.MeshField(
mesh,
)
f_mesh = sleplet.harmonic_methods.mesh_inverse(
f.mesh,
f.coefficients,
)
# creates surface plot on a mesh
sleplet.plotting.PlotMesh(
mesh,
"fig_9",
f_mesh,
normalise=False,
).execute()
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 10
# a
mesh homer -m slepian_wavelet_coefficients -u -z
# b-f
for j in $(seq 0 4); do
mesh homer -e 3 2 ${j} -m slepian_wavelet_coefficients -u -z
done
import sleplet
mesh = sleplet.meshes.Mesh("homer", zoom=True)
for j in [None, *list(range(5))]:
f = sleplet.meshes.MeshSlepianWaveletCoefficients(
mesh,
B=3,
j_min=2,
j=j,
)
f_mesh = sleplet.slepian_methods.slepian_mesh_inverse(
f.mesh_slepian,
f.coefficients,
)
# creates surface plot on a mesh
sleplet.plotting.PlotMesh(
mesh,
f"fig_10_j_{j}",
f_mesh,
normalise=False,
region=True,
).execute()
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 11
# a
mesh homer -m slepian_field -u -z
# b
mesh homer -m slepian_field -n -5 -u -z
# c
python -m examples.mesh.denoising_slepian_mesh homer -n -5 -s 2
import sleplet
mesh = sleplet.meshes.Mesh(
"homer",
zoom=True,
)
# a
f = sleplet.meshes.MeshSlepianField(
mesh,
)
f_mesh = sleplet.slepian_methods.slepian_mesh_inverse(
f.mesh_slepian,
f.coefficients,
)
# creates surface plot on a mesh
sleplet.plotting.PlotMesh(
mesh,
"fig_11_a",
f_mesh,
normalise=False,
region=True,
).execute()
# b
g = sleplet.meshes.MeshSlepianField(
mesh,
noise=-5,
)
g_mesh = sleplet.slepian_methods.slepian_mesh_inverse(
g.mesh_slepian,
g.coefficients,
)
amplitude = sleplet.plot_methods.compute_amplitude_for_noisy_mesh_plots(
g,
)
# creates surface plot on a mesh
sleplet.plotting.PlotMesh(
mesh,
"fig_11_b",
g_mesh,
amplitude=amplitude,
normalise=False,
region=True,
).execute()
Slepian Scale-Discretised Wavelets on Manifolds: Fig. 12
for f in cheetah dragon bird teapot cube; do
python -m examples.mesh.mesh_region ${f}
done
Slepian Scale-Discretised Wavelets on Manifolds: Tab. 1
python -m examples.mesh.produce_table
Slepian Wavelets for the Analysis of Incomplete Data on Manifolds
Chapter 2
Fig. 2.1
for ell in $(seq 0 4); do
for m in $(seq 0 ${ell}); do
sphere spherical_harmonic -e ${ell} ${m} -L 128 -u -z
done
done
import pyssht as ssht
import sleplet
for ell in range(5):
for m in range(ell + 1):
f = sleplet.functions.SphericalHarmonic(
128,
ell=ell,
m=m,
)
f_sphere = ssht.inverse(
f.coefficients,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_2_1_ell_{ell}_m_{m}",
normalise=False,
unzeropad=True,
).execute()
Fig. 2.2
# a
sphere elongated_gaussian -e -1 -1 -L 128
# b
sphere elongated_gaussian -e -1 -1 -L 128 -m rotate -a 0 -b 0 -g 0.25
# c
sphere elongated_gaussian -e -1 -1 -L 128 -m rotate -a 0 -b 0.25 -g 0.25
# d
sphere elongated_gaussian -e -1 -1 -L 128 -m rotate -a 0.25 -b 0.25 -g 0.25
import numpy as np
import pyssht as ssht
import sleplet
# a
f = sleplet.functions.ElongatedGaussian(
128,
p_sigma=0.1,
t_sigma=0.1,
)
f_sphere = ssht.inverse(
f.coefficients,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_2_2_a",
annotations=[],
).execute()
# b-d
for a, b, g in [
(0, 0, 0.25),
(0, 0.25, 0.25),
(0.25, 0.25, 0.25),
]:
glm_rot = f.rotate(
alpha=a * np.pi,
beta=b * np.pi,
gamma=g * np.pi,
)
g_sphere = ssht.inverse(
glm_rot,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
g_sphere,
f.L,
f"fig_2_2_a_{a}_b_{b}_g_{g}",
annotations=[],
).execute()
Fig. 2.3
python -m examples.misc.wavelet_transform
Fig. 2.4
python -m examples.wavelets.axisymmetric_tiling
Fig. 2.5
# a
sphere axisymmetric_wavelets -L 128 -u
# b-e
for j in $(seq 0 3); do
sphere axisymmetric_wavelets -e 3 2 ${j} -L 128 -u
done
import pyssht as ssht
import sleplet
for j in [None, *list(range(4))]:
f = sleplet.functions.AxisymmetricWavelets(
128,
B=3,
j_min=2,
j=j,
)
f_sphere = ssht.inverse(
f.coefficients,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_2_5_j_{j}",
normalise=False,
).execute()
Fig. 2.6
python -m examples.polar_cap.eigenvalues
Fig. 2.7
python -m examples.polar_cap.fried_egg
Fig. 2.8
python -m examples.polar_cap.eigenfunctions
Chapter 3
Fig. 3.1
# a
sphere gaussian -L 128
# b
sphere gaussian -a 0.75 -b 0.125 -L 128 -m translate -o
import numpy as np
import pyssht as ssht
import sleplet
# a
f = sleplet.functions.Gaussian(
128,
)
f_sphere = ssht.inverse(
f.coefficients,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_3_1_a",
annotations=[],
).execute()
# b
glm_trans = f.translate(
alpha=0.75 * np.pi,
beta=0.125 * np.pi,
)
g_sphere = ssht.inverse(
glm_trans,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
g_sphere,
f.L,
"fig_3_1_b",
annotations=[],
).execute()
Fig. 3.2
# a
sphere squashed_gaussian -L 128
# b
sphere squashed_gaussian -a 0.75 -b 0.125 -L 128 -m translate -o
import numpy as np
import pyssht as ssht
import sleplet
# a
f = sleplet.functions.SquashedGaussian(
128,
)
f_sphere = ssht.inverse(
f.coefficients,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_3_2_a",
annotations=[],
).execute()
# b
glm_trans = f.translate(
alpha=0.75 * np.pi,
beta=0.125 * np.pi,
)
g_sphere = ssht.inverse(
glm_trans,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
g_sphere,
f.L,
"fig_3_2_b",
annotations=[],
).execute()
Fig. 3.3
# a
sphere elongated_gaussian -L 128
# b
sphere elongated_gaussian -a 0.75 -b 0.125 -L 128 -m translate -o
import numpy as np
import pyssht as ssht
import sleplet
# a
f = sleplet.functions.ElongatedGaussian(
128,
)
f_sphere = ssht.inverse(
f.coefficients,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
"fig_3_3_a",
annotations=[],
).execute()
# b
glm_trans = f.translate(
alpha=0.75 * np.pi,
beta=0.125 * np.pi,
)
g_sphere = ssht.inverse(
glm_trans,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
g_sphere,
f.L,
"fig_3_3_b",
annotations=[],
).execute()
Fig. 3.4
Figs. (c-d) correspond to (a-b) in Fig. 1 of the Sifting Convolution on the Sphere paper. The following creates Figs. (a-b).
for ell in $(seq 2 -1 1); do
sphere harmonic_gaussian -e ${ell} 1 -L 128
done
import pyssht as ssht
import sleplet
for ell in range(2, 0, -1):
f = sleplet.functions.HarmonicGaussian(
128,
l_sigma=10**ell,
m_sigma=10,
)
f_sphere = ssht.inverse(
f.coefficients,
f.L,
Method="MWSS",
)
# creates surface plot on the sphere
sleplet.plotting.PlotSphere(
f_sphere,
f.L,
f"fig_3_4_ell_{ell}",
annotations=[],
).execute()
Fig. 3.5
The same as Fig. 2 of the Sifting Convolution on the Sphere paper.
Fig. 3.6
The same as Fig. 3 of the Sifting Convolution on the Sphere paper.
Chapter 4
The plots here are the same as the Slepian Scale-Discretised Wavelets on the Sphere paper without the Africa examples, i.e. Fig. 10 onwards.
Chapter 5
The plots here are the same as the Slepian Scale-Discretised Wavelets on Manifolds paper.
Sub-modules
sleplet.functions
-
Set of classes to create functions on the sphere.
sleplet.harmonic_methods
-
Methods to perform operations in Fourier space of the sphere or mesh.
sleplet.meshes
-
Classes to create and handle mesh (manifold) data.
sleplet.noise
-
Methods to handle noise in Fourier or wavelet space.
sleplet.plot_methods
-
Methods to help in creating plots.
sleplet.plotting
-
Classes to create plots on the sphere or mesh.
sleplet.slepian
-
Classes to create the Slepian regions on the sphere.
sleplet.slepian_methods
-
Methods to work with Slepian coefficients.
sleplet.wavelet_methods
-
Methods to work with wavelet and wavelet coefficients.