21 #include "tools_for_tests/directories.h"
27 int main(
int argc,
char const **argv) {
40 std::string
const input = argc >= 2 ? argv[1] :
"cameraman256";
41 std::string
const output = argc == 3 ? argv[2] :
"none";
43 std::cout <<
"Usage:\n"
46 <<
" [input [output]]\n\n"
47 "- input: path to the image to clean (or name of standard SOPT image)\n"
48 "- output: filename pattern for output image\n";
52 auto const seed = std::time(
nullptr);
53 std::srand(
static_cast<unsigned int>(seed));
54 std::mt19937
mersenne(std::time(
nullptr));
66 auto const psi = sopt::linear_transform<Scalar>(wavelet, image.rows(), image.cols());
69 Vector const y0 = sampling * Vector::Map(image.data(), image.size());
70 auto constexpr snr = 30.0;
71 auto const sigma = y0.stableNorm() / std::sqrt(y0.size()) * std::pow(10.0, -(snr / 20.0));
72 auto const epsilon = std::sqrt(nmeasure + 2 * std::sqrt(y0.size())) *
sigma;
75 std::normal_distribution<> gaussian_dist(0,
sigma);
79 if (output !=
"none") {
82 "dirty_" + output +
".tiff");
90 SOPT_MEDIUM_LOG(
"||abs(x) - x||_2: {}", (x.array().abs().matrix() - x).stableNorm());
103 .append(sopt::proximal::l1_norm<Scalar>, psi.adjoint(), psi)
107 .append(sopt::proximal::positive_quadrant<Scalar>);
113 using t_PosQuadSDMM = std::remove_const<decltype(posq)>::type;
114 auto const min_delta =
sigma * std::sqrt(y.size()) / std::sqrt(8 * image.size());
117 auto set_weights = [](t_PosQuadSDMM &sdmm,
Vector const &weights) {
118 sdmm.algorithm().proximals(0) = [weights](
Vector &out,
Scalar gamma,
Vector const &x) {
122 auto call_PsiT = [&psi](t_PosQuadSDMM
const &,
Vector const &x) ->
Vector {
123 return psi.adjoint() * x;
127 .min_delta(min_delta)
131 auto warm_start = sdmm(Vector::Zero(image.size()));
141 if (not result.good)
throw std::runtime_error(
"Did not converge!");
143 SOPT_HIGH_LOG(
"SOPT-SDMM converged in {} iterations", result.niters);
144 if (output !=
"none")
An operator that samples a set of measurements.
bool is_converged(t_Vector const &x) const
Forwards to convergence function parameter.
SDMM< SCALAR > & conjugate_gradient(t_uint itermax, t_real tolerance)
Helps setup conjugate gradient.
Proximal for indicator function of L2 ball.
std::unique_ptr< std::mt19937_64 > mersenne(new std::mt19937_64(0))
int main(int argc, char const **argv)
#define SOPT_HIGH_LOG(...)
High priority message.
#define SOPT_MEDIUM_LOG(...)
Medium priority message.
Reweighted< ALGORITHM > reweighted(ALGORITHM const &algo, typename Reweighted< ALGORITHM >::t_SetWeights const &set_weights, typename Reweighted< ALGORITHM >::t_Reweightee const &reweightee)
Factory function to create an l0-approximation by reweighting an l1 norm.
Translation< FUNCTION, VECTOR > translate(FUNCTION const &func, VECTOR const &translation)
Translates given proximal by given vector.
void write_tiff(Image<> const &image, std::string const &filename)
Writes a tiff greyscale file.
Wavelet factory(const std::string &name, t_uint nlevels)
Creates a wavelet transform object.
Eigen::CwiseUnaryOp< const details::ProjectPositiveQuadrant< typename T::Scalar >, const T > positive_quadrant(Eigen::DenseBase< T > const &input)
Expression to create projection onto positive quadrant.
int t_int
Root of the type hierarchy for signed integers.
Vector< T > dirty(sopt::LinearTransform< Vector< T >> const &sampling, sopt::Image< T > const &image, RANDOM &mersenne)
std::enable_if< std::is_arithmetic< SCALAR >::value or is_complex< SCALAR >::value, SCALAR >::type soft_threshhold(SCALAR const &x, typename real_type< SCALAR >::type const &threshhold)
abs(x) < threshhold ? 0: x - sgn(x) * threshhold
size_t t_uint
Root of the type hierarchy for unsigned integers.
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > Image
A 2-dimensional list of elements of given type.
real_type< T >::type epsilon(sopt::LinearTransform< Vector< T >> const &sampling, sopt::Image< T > const &image)
Eigen::Matrix< T, Eigen::Dynamic, 1 > Vector
A vector of a given type.
real_type< T >::type sigma(sopt::LinearTransform< Vector< T >> const &sampling, sopt::Image< T > const &image)
real_type< typename T0::Scalar >::type l1_norm(Eigen::ArrayBase< T0 > const &input, Eigen::ArrayBase< T1 > const &weights)
Computes weighted L1 norm.
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > Matrix
A matrix of a given type.
sopt::Vector< Scalar > Vector
sopt::Matrix< Scalar > Matrix
sopt::Image< Scalar > Image