- ProxNest.operators.proximal_operators.hard_thresh(x, T)
Compute the element-wise hard-thresholding of \(x\).
- Parameters
x (np.ndarray) – Array to threshold.
T (float) – Hard-thresholding level (regularisation parameter)
delta (float) – Weighting parameter.
- Returns
Thresholded coefficients of \(x\).
- Return type
np.ndarray
- ProxNest.operators.proximal_operators.l1_projection(x, T, delta, Psi=<ProxNest.operators.sensing_operators.Identity object>)
Compute the l1 proximal operator wrt dictionary \(\Psi\).
- Parameters
x (np.ndarray) – Array to threshold.
T (float) – Soft-thresholding level (regularisation parameter)
delta (float) – Weighting parameter.
Psi (LinearOperator) – Prior dictionary (default = Identity)
- Returns
Thresholded coefficients of \(x\).
- Return type
np.ndarray
- ProxNest.operators.proximal_operators.l2_projection(x, T, delta, Psi=<ProxNest.operators.sensing_operators.Identity object>)
Compute the l2 gradient step wrt dictionary \(\Psi\).
- Parameters
x (np.ndarray) – Array to threshold.
T (float) – Soft-thresholding level (regularisation parameter)
delta (float) – Weighting parameter.
Psi (LinearOperator) – Prior dictionary (default = Identity)
- Returns
Thresholded coefficients of \(x\).
- Return type
np.ndarray
- ProxNest.operators.proximal_operators.soft_thresh(x, T, delta=2)
Compute the element-wise soft-thresholding of \(x\).
- Parameters
x (np.ndarray) – Array to threshold.
T (float) – Soft-thresholding level (regularisation parameter)
delta (float) – Weighting parameter (default = 2).
- Returns
Thresholded coefficients of \(x\).
- Return type
np.ndarray