Compression#
- s2scat.compression.C01_C11_to_isotropic(C01: List[float64], C11: List[float64], J_min: int, J_max: int) Tuple[Array] #
Convert the fourth (C01) and sixth (C11) order covariances to isotropic coefficients.
- Parameters:
C01 (List[jnp.float64]) – Fourth order covariance statistic \(\text{Cov}\big [ \Psi^{\lambda_1} f, \Psi^{\lambda_1} | \Psi^{\lambda_2} f | \big ]\).
C11 (List[jnp.float64]) – Sixth order covariance statistic \(\text{Cov}\big [ \Psi^{\lambda_1} | \Psi^{\lambda_3} f |, \Psi^{\lambda_1} | \Psi^{\lambda_2} f | \big ]\).
J_min (int) – Minimum dyadic wavelet scale to consider.
J_max (int) – Maximum dyadic wavelet scale to consider.
- Returns:
Isotropic fourth and sixth order scattering covariance statistics.
- Return type:
Tuple[jnp.ndarray]
Notes
For isotropic coefficients the statistics will be contracted across \(n\). This will dramatically compress the covariance representation, but will be somewhat less sensitive to directional structure.