Normalisation#
- s2scat.utility.normalisation.apply_norm(S1: List[float64], P00: List[float64], C01: List[float64], C11: List[float64], norm: List[Array], J_min: int, J_max: int) Tuple[List[Array]] #
Applies multi-scale normalisation to the scattering covariances.
- Parameters:
S1 (List[jnp.float64]) – Mean field statistic \(\langle |\Psi^\lambda f| \rangle\).
P00 (List[jnp.float64]) – Second order power statistic \(\langle |\Psi^\lambda f|^2 \rangle\).
C01 (List[jnp.float64]) – Fourth order covariance statistic \(\text{Cov}\big [ \Psi^{\lambda_1} f, \Psi^{\lambda_1} | \Psi^{\lambda_2} f | \big ]\).
C11 (List[jnp.float64]) – Sixth order covariance statistic \(\text{Cov}\big [ \Psi^{\lambda_1} | \Psi^{\lambda_3} f |, \Psi^{\lambda_1} | \Psi^{\lambda_2} f | \big ]\).
norm (List[jnp.ndarray]) – Multiscale normalisation factors for given signal.
J_min (int) – Minimum dyadic wavelet scale to consider.
J_max (int) – Maximum dyadic wavelet scale to consider.
- Returns:
Tuple of normalised scattering covariance statistics.
- Return type:
Tuple[List[jnp.ndarray]]
- s2scat.utility.normalisation.compute_norm(flm: Array, L: int, N: int, J_min: int = 0, reality: bool = False, config: List[Array] = None, recursive: bool = True) List[Array] #
Compute multi-scale normalisation for the scattering covariances.
- Parameters:
flm (jnp.ndarray) – Spherical harmonic coefficients.
L (int) – Spherical harmonic bandlimit.
N (int) – Azimuthal bandlimit (directionality).
J_min (int, optional) – Minimum dyadic wavelet scale to consider. Defaults to 0.
reality (bool, optional) – Whether \(f \in \mathbb{R}\), if True exploits hermitian symmetry of harmonic coefficients. Defaults to False.
config (List[jnp.ndarray], optional) – All necessary precomputed arrays. Defaults to None.
recursive (bool, optional) – Whether to perform a memory efficient recursive transform, or a faster but less memory efficient fully precompute transform. Defaults to True.
- Raises:
ValueError – If one does not pass configuration arrays.
- Returns:
Normalisation for the scattering covariance statistics.
- Return type:
Tuple[jnp.ndarray]