Numpy Transforms#
- s2wav.transforms.base.analysis(f: ndarray, L: int, N: int = 1, J_min: int = 0, lam: float = 2.0, spin: int = 0, spin0: int = 0, sampling: str = 'mw', nside: int | None = None, reality: bool = False, multiresolution: bool = True, scattering: bool = False) Tuple[ndarray, ndarray] #
Wavelet analysis from pixel space to wavelet space for complex signals.
- Parameters:
f (np.ndarray) – Signal \(f\) on the sphere with shape \([n_{\theta}, n_{\phi}]\).
L (int) – Harmonic bandlimit.
N (int, optional) – Upper azimuthal band-limit. Defaults to 1.
J_min (int, optional) – Lowest frequency wavelet scale to be used. Defaults to 0.
lam (float, optional) – Wavelet parameter which determines the scale factor between consecutive wavelet scales. Note that \(\lambda = 2\) indicates dyadic wavelets. Defaults to 2.
spin (int, optional) – Spin (integer) of input signal. Defaults to 0.
spin0 (int, optional) – Spin (integer) of output signal. Defaults to 0.
sampling (str, optional) – Spherical sampling scheme from {“mw”,”mwss”, “dh”, “healpix”}. Defaults to “mw”.
nside (int, optional) – HEALPix Nside resolution parameter. Only required if sampling=”healpix”. Defaults to None.
reality (bool, optional) – Whether \(f \in \mathbb{R}\), if True exploits conjugate symmetry of harmonic coefficients. Defaults to False.
multiresolution (bool, optional) – Whether to store the scales at \(j_{\text{max}}\) resolution or its own resolution. Defaults to True.
scattering (bool, optional) – If using for scattering transform return absolute value of scattering coefficients.
- Returns:
- Array of wavelet pixel-space coefficients
with shape \([n_{J}, 2N-1, n_{\theta}, n_{\phi}]\).
- f_scal (np.ndarray): Array of scaling pixel-space coefficients
with shape \([n_{\theta}, n_{\phi}]\).
- Return type:
f_wav (np.ndarray)
- s2wav.transforms.base.analysis_looped(f: ndarray, L: int, N: int = 1, J_min: int = 0, lam: float = 2.0, spin: int = 0, spin0: int = 0, sampling: str = 'mw', nside: int | None = None, reality: bool = False, multiresolution: bool = True) Tuple[ndarray, ndarray] #
Wavelet analysis from pixel space to wavelet space for complex signals.
- Parameters:
f (np.ndarray) – Signal \(f\) on the sphere with shape \([n_{\theta}, n_{\phi}]\).
L (int) – Harmonic bandlimit.
N (int, optional) – Upper azimuthal band-limit. Defaults to 1.
J_min (int, optional) – Lowest frequency wavelet scale to be used. Defaults to 0.
lam (float, optional) – Wavelet parameter which determines the scale factor between consecutive wavelet scales. Note that \(\lambda = 2\) indicates dyadic wavelets. Defaults to 2.
spin (int, optional) – Spin (integer) of input signal. Defaults to 0.
spin0 (int, optional) – Spin (integer) of output signal. Defaults to 0.
sampling (str, optional) – Spherical sampling scheme from {“mw”,”mwss”, “dh”, “healpix”}. Defaults to “mw”.
nside (int, optional) – HEALPix Nside resolution parameter. Only required if sampling=”healpix”. Defaults to None.
reality (bool, optional) – Whether \(f \in \mathbb{R}\), if True exploits conjugate symmetry of harmonic coefficients. Defaults to False.
multiresolution (bool, optional) – Whether to store the scales at \(j_{\text{max}}\) resolution or its own resolution. Defaults to True.
- Returns:
- Array of wavelet pixel-space coefficients
with shape \([n_{J}, 2N-1, n_{\theta}, n_{\phi}]\).
- f_scal (np.ndarray): Array of scaling pixel-space coefficients
with shape \([n_{\theta}, n_{\phi}]\).
- Return type:
f_wav (np.ndarray)
- s2wav.transforms.base.synthesis(f_wav: ndarray, f_scal: ndarray, L: int, N: int = 1, J_min: int = 0, lam: float = 2.0, spin: int = 0, spin0: int = 0, sampling: str = 'mw', nside: int | None = None, reality: bool = False, multiresolution: bool = True) ndarray #
Computes the synthesis directional wavelet transform [1,2]. Specifically, this transform synthesises the signal \(_{s}f(\omega) \in \mathbb{S}^2\) by summing the contributions from wavelet and scaling coefficients in harmonic space, see equation 27 from [2]. :param f_wav: Array of wavelet pixel-space coefficients
with shape \([n_{J}, 2N-1, n_{\theta}, n_{\phi}]\).
- Parameters:
f_scal (np.ndarray) – Array of scaling pixel-space coefficients with shape \([n_{\theta}, n_{\phi}]\).
L (int) – Harmonic bandlimit.
N (int, optional) – Upper azimuthal band-limit. Defaults to 1.
J_min (int, optional) – Lowest frequency wavelet scale to be used. Defaults to 0.
lam (float, optional) – Wavelet parameter which determines the scale factor between consecutive wavelet scales. Note that \(\lambda = 2\) indicates dyadic wavelets. Defaults to 2.
spin (int, optional) – Spin (integer) of input signal. Defaults to 0.
spin0 (int, optional) – Spin (integer) of output signal. Defaults to 0.
sampling (str, optional) – Spherical sampling scheme from {“mw”,”mwss”, “dh”, “healpix”}. Defaults to “mw”.
nside (int, optional) – HEALPix Nside resolution parameter. Only required if sampling=”healpix”. Defaults to None.
reality (bool, optional) – Whether \(f \in \mathbb{R}\), if True exploits conjugate symmetry of harmonic coefficients. Defaults to False.
multiresolution (bool, optional) – Whether to store the scales at \(j_{\text{max}}\) resolution or its own resolution. Defaults to True.
- Raises:
AssertionError – Shape of wavelet/scaling coefficients incorrect.
- Returns:
Signal \(f\) on the sphere with shape \([n_{\theta}, n_{\phi}]\).
- Return type:
np.ndarray
Notes
[1] B. Leidstedt et. al., “S2LET: A code to perform fast wavelet analysis on the sphere”, A&A, vol. 558, p. A128, 2013. [2] J. McEwen et. al., “Directional spin wavelets on the sphere”, arXiv preprint arXiv:1509.06749 (2015).
- s2wav.transforms.base.synthesis_looped(f_wav: ndarray, f_scal: ndarray, L: int, N: int, J_min: int = 0, lam: float = 2.0, spin: int = 0, spin0: int = 0, sampling: str = 'mw', nside: int | None = None, reality: bool = False, multiresolution: bool = True) ndarray #
Computes the synthesis directional wavelet transform [1,2]. Specifically, this transform synthesises the signal \(_{s}f(\omega) \in \mathbb{S}^2\) by summing the contributions from wavelet and scaling coefficients in harmonic space, see equation 27 from [2]. :param f_wav: Array of wavelet pixel-space coefficients
with shape \([n_{J}, 2N-1, n_{\theta}, n_{\phi}]\).
- Parameters:
f_scal (np.ndarray) – Array of scaling pixel-space coefficients with shape \([n_{\theta}, n_{\phi}]\).
L (int) – Harmonic bandlimit.
N (int, optional) – Upper azimuthal band-limit. Defaults to 1.
J_min (int, optional) – Lowest frequency wavelet scale to be used. Defaults to 0.
lam (float, optional) – Wavelet parameter which determines the scale factor between consecutive wavelet scales. Note that \(\lambda = 2\) indicates dyadic wavelets. Defaults to 2.
spin (int, optional) – Spin (integer) of input signal. Defaults to 0.
spin0 (int, optional) – Spin (integer) of output signal. Defaults to 0.
sampling (str, optional) – Spherical sampling scheme from {“mw”,”mwss”, “dh”, “healpix”}. Defaults to “mw”.
nside (int, optional) – HEALPix Nside resolution parameter. Only required if sampling=”healpix”. Defaults to None.
reality (bool, optional) – Whether \(f \in \mathbb{R}\), if True exploits conjugate symmetry of harmonic coefficients. Defaults to False.
multiresolution (bool, optional) – Whether to store the scales at \(j_{\text{max}}\) resolution or its own resolution. Defaults to True.
- Raises:
AssertionError – Shape of wavelet/scaling coefficients incorrect.
- Returns:
Signal \(f\) on the sphere with shape \([n_{\theta}, n_{\phi}]\).
- Return type:
np.ndarray
Notes
[1] B. Leidstedt et. al., “S2LET: A code to perform fast wavelet analysis on the sphere”, A&A, vol. 558, p. A128, 2013. [2] J. McEwen et. al., “Directional spin wavelets on the sphere”, arXiv preprint arXiv:1509.06749 (2015).