21 #include "tools_for_tests/directories.h"
25 int main(
int argc,
char const **argv) {
38 std::string
const input = argc >= 2 ? argv[1] :
"cameraman256";
39 std::string
const output = argc == 3 ? argv[2] :
"none";
41 std::cout <<
"Usage:\n"
44 <<
" [input [output]]\n\n"
45 "- input: path to the image to clean (or name of standard SOPT image)\n"
46 "- output: filename pattern for output image\n";
50 auto const seed = std::time(
nullptr);
51 std::srand(
static_cast<unsigned int>(seed));
52 std::mt19937
mersenne(std::time(
nullptr));
59 SOPT_HIGH_LOG(
"Image size: {} x {} = {}", image.cols(), image.rows(), image.size());
62 sopt::t_uint const nmeasure = std::floor(0.33 * image.size());
71 auto const psi = sopt::linear_transform<Scalar>(wavelet, image.rows(), image.cols());
72 SOPT_LOW_LOG(
"Wavelet coefficients: {}", (psi.adjoint() * image).size());
75 Vector const y0 = sampling * Vector::Map(image.data(), image.size());
76 auto constexpr snr = 30.0;
77 auto const sigma = y0.stableNorm() / std::sqrt(y0.size()) * std::pow(10.0, -(snr / 20.0));
78 auto const epsilon = std::sqrt(nmeasure + 2 * std::sqrt(nmeasure)) *
sigma;
81 std::normal_distribution<> gaussian_dist(0,
sigma);
85 if (output !=
"none") {
88 "dirty_" + output +
".tiff");
98 .regulariser_strength(regulariser_strength)
99 .relative_variation(5e-4)
100 .residual_tolerance(0)
106 auto gp = std::make_shared<sopt::algorithm::L1GProximal<Scalar>>(
false);
107 gp->l1_proximal_tolerance(1e-4)
109 .l1_proximal_itermax(50)
110 .l1_proximal_positivity_constraint(
true)
111 .l1_proximal_real_constraint(
true)
120 auto const diagnostic = fb();
121 SOPT_HIGH_LOG(
"Forward backward returned {}", diagnostic.good);
123 if (output !=
"none")
129 if (not diagnostic.good)
throw std::runtime_error(
"Did not converge!");
131 SOPT_HIGH_LOG(
"SOPT-Forward Backward converged in {} iterations", diagnostic.niters);
136 const std::function<
Scalar(
Vector)> objective_function = [regulariser_strength,
sigma, &y, &sampling,
138 return sopt::l1_norm(psi.adjoint() * x) * regulariser_strength +
145 std::tie(lower_error, mean_solution, upper_error) =
146 sopt::credible_region::credible_interval<sopt::Vector<sopt::t_real>,
sopt::t_real>(
147 diagnostic.x, image.rows(), image.cols(), grid_pixel_size, objective_function, alpha);
148 if (output !=
"none") {
150 Matrix::Map(upper_error.data(), upper_error.rows(), upper_error.cols()),
151 output +
"_upper_error.tiff");
153 Matrix::Map(mean_solution.data(), mean_solution.rows(), mean_solution.cols()),
154 output +
"_mean_solution.tiff");
156 Matrix::Map(lower_error.data(), lower_error.rows(), lower_error.cols()),
157 output +
"_lower_error.tiff");
An operator that samples a set of measurements.
t_LinearTransform const & Phi() const
Measurement operator.
std::unique_ptr< std::mt19937_64 > mersenne(new std::mt19937_64(0))
int main(int argc, char const **argv)
#define SOPT_LOW_LOG(...)
Low priority message.
#define SOPT_HIGH_LOG(...)
High priority message.
void set_level(const std::string &level)
Method to set the logging level of the default Log object.
void write_tiff(Image<> const &image, std::string const &filename)
Writes a tiff greyscale file.
Wavelet factory(const std::string &name, t_uint nlevels)
Creates a wavelet transform object.
int t_int
Root of the type hierarchy for signed integers.
Vector< T > dirty(sopt::LinearTransform< Vector< T >> const &sampling, sopt::Image< T > const &image, RANDOM &mersenne)
double t_real
Root of the type hierarchy for real numbers.
size_t t_uint
Root of the type hierarchy for unsigned integers.
Eigen::Array< T, Eigen::Dynamic, Eigen::Dynamic > Image
A 2-dimensional list of elements of given type.
real_type< T >::type epsilon(sopt::LinearTransform< Vector< T >> const &sampling, sopt::Image< T > const &image)
Eigen::Matrix< T, Eigen::Dynamic, 1 > Vector
A vector of a given type.
real_type< T >::type sigma(sopt::LinearTransform< Vector< T >> const &sampling, sopt::Image< T > const &image)
real_type< typename T0::Scalar >::type l1_norm(Eigen::ArrayBase< T0 > const &input, Eigen::ArrayBase< T1 > const &weights)
Computes weighted L1 norm.
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > Matrix
A matrix of a given type.
real_type< typename T0::Scalar >::type l2_norm(Eigen::ArrayBase< T0 > const &input, Eigen::ArrayBase< T1 > const &weights)
Computes weighted L2 norm.
sopt::Vector< Scalar > Vector
sopt::Matrix< Scalar > Matrix
sopt::Image< Scalar > Image