1 #include "purify/config.h" 
    7 #include <boost/math/special_functions/erf.hpp> 
    8 #include "purify/directories.h" 
   13 #include <sopt/imaging_padmm.h> 
   14 #include <sopt/positive_quadrant.h> 
   15 #include <sopt/power_method.h> 
   16 #include <sopt/relative_variation.h> 
   17 #include <sopt/reweighted.h> 
   18 #include <sopt/utilities.h> 
   19 #include <sopt/wavelets.h> 
   20 #include <sopt/wavelets/sara.h> 
   22 int main(
int nargs, 
char const **args) {
 
   24     std::cerr << 
" Wrong number of arguments! " << 
'\n';
 
   31   std::string 
const kernel = args[1];
 
   32   t_real 
const over_sample = std::stod(
static_cast<std::string
>(args[2]));
 
   33   t_int 
const J = 
static_cast<t_int
>(std::stod(
static_cast<std::string
>(args[3])));
 
   34   t_real 
const m_over_n = std::stod(
static_cast<std::string
>(args[4]));
 
   35   std::string 
const test_number = 
static_cast<std::string
>(args[5]);
 
   36   t_real 
const ISNR = std::stod(
static_cast<std::string
>(args[6]));
 
   37   std::string 
const name = 
static_cast<std::string
>(args[7]);
 
   41   std::string 
const dirty_image_fits =
 
   43   std::string 
const results =
 
   47   auto sky_model_max = sky_model.array().abs().maxCoeff();
 
   48   sky_model = sky_model / sky_model_max;
 
   49   t_int 
const number_of_vis = std::floor(m_over_n * sky_model.size());
 
   54   auto simulate_measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
 
   56           uv_data.u, uv_data.v, uv_data.w, uv_data.weights, sky_model.cols(), sky_model.rows(),
 
   58       100, 1e-4, Vector<t_complex>::Random(sky_model.size())));
 
   59   uv_data.vis = simulate_measurements * sky_model;
 
   62   auto measurements_transform = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
 
   64           uv_data.u, uv_data.v, uv_data.w, uv_data.weights, sky_model.cols(), sky_model.rows(),
 
   66       100, 1e-4, Vector<t_complex>::Random(sky_model.size())));
 
   68   sopt::wavelets::SARA 
const sara{
 
   69       std::make_tuple(
"Dirac", 3u), std::make_tuple(
"DB1", 3u), std::make_tuple(
"DB2", 3u),
 
   70       std::make_tuple(
"DB3", 3u),   std::make_tuple(
"DB4", 3u), std::make_tuple(
"DB5", 3u),
 
   71       std::make_tuple(
"DB6", 3u),   std::make_tuple(
"DB7", 3u), std::make_tuple(
"DB8", 3u)};
 
   73   auto const Psi = sopt::linear_transform<t_complex>(sara, sky_model.rows(), sky_model.cols());
 
   80   Vector<> dimage = (measurements_transform.adjoint() * uv_data.vis).real();
 
   81   t_real 
const max_val = dimage.array().abs().maxCoeff();
 
   82   dimage = dimage / max_val;
 
   83   Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
 
   86   auto const purify_regulariser_strength =
 
   87       (Psi.adjoint() * (measurements_transform.adjoint() * uv_data.vis).eval()).real().maxCoeff() *
 
   93   auto const padmm = sopt::algorithm::ImagingProximalADMM<t_complex>(uv_data.vis)
 
   94                          .regulariser_strength(purify_regulariser_strength)
 
   95                          .relative_variation(1e-3)
 
   96                          .l2ball_proximal_epsilon(epsilon * 1.001)
 
   98                          .l1_proximal_tolerance(1e-2)
 
  100                          .l1_proximal_itermax(50)
 
  101                          .l1_proximal_positivity_constraint(
true)
 
  102                          .l1_proximal_real_constraint(
true)
 
  103                          .residual_convergence(epsilon * 1.001)
 
  104                          .lagrange_update_scale(0.9)
 
  106                          .Phi(measurements_transform);
 
  108   auto const posq = sopt::algorithm::positive_quadrant(
padmm);
 
  109   auto const min_delta = sigma * std::sqrt(uv_data.vis.size()) / std::sqrt(9 * sky_model.size());
 
  112   auto const reweighted = sopt::algorithm::reweighted(
padmm).min_delta(min_delta).is_converged(
 
  113       sopt::RelativeVariation<std::complex<t_real>>(1e-3));
 
  114   std::clock_t c_start = std::clock();
 
  115   auto const diagnostic = reweighted();
 
  116   std::clock_t c_end = std::clock();
 
  118   Image<t_complex> image =
 
  119       Image<t_complex>::Map(diagnostic.algo.x.data(), sky_model.rows(), sky_model.cols());
 
  121   Vector<t_complex> original = Vector<t_complex>::Map(sky_model.data(), sky_model.size(), 1);
 
  122   Image<t_complex> res = sky_model - image;
 
  123   Vector<t_complex> residual = Vector<t_complex>::Map(res.data(), image.size(), 1);
 
  125   auto snr = 20. * std::log10(original.norm() / residual.norm());  
 
  126   auto total_time = (c_end - c_start) / CLOCKS_PER_SEC;  
 
  128   std::ofstream out(results);
 
  130   out << snr << 
" " << total_time;
 
#define PURIFY_HIGH_LOG(...)
High priority message.
 
#define PURIFY_MEDIUM_LOG(...)
Medium priority message.
 
const t_real pi
mathematical constant
 
const std::map< std::string, kernel > kernel_from_string
 
void set_level(const std::string &level)
Method to set the logging level of the default Log object.
 
std::shared_ptr< sopt::LinearTransform< T > > init_degrid_operator_2d(const Vector< t_real > &u, const Vector< t_real > &v, const Vector< t_real > &w, const Vector< t_complex > &weights, const t_uint &imsizey, const t_uint &imsizex, const t_real &oversample_ratio=2, const kernels::kernel kernel=kernels::kernel::kb, const t_uint Ju=4, const t_uint Jv=4, const bool w_stacking=false, const t_real &cellx=1, const t_real &celly=1)
Returns linear transform that is the standard degridding operator.
 
Image< t_complex > read2d(const std::string &fits_name)
Read image from fits file.
 
t_real SNR_to_standard_deviation(const Vector< t_complex > &y0, const t_real &SNR)
Converts SNR to RMS noise.
 
Vector< t_complex > add_noise(const Vector< t_complex > &y0, const t_complex &mean, const t_real &standard_deviation)
Add guassian noise to vector.
 
utilities::vis_params random_sample_density(const t_int vis_num, const t_real mean, const t_real standard_deviation, const t_real rms_w)
Generates a random visibility coverage.
 
t_real calculate_l2_radius(const t_uint y_size, const t_real &sigma, const t_real &n_sigma, const std::string distirbution)
A function that calculates the l2 ball radius for sopt.
 
std::string output_filename(std::string const &filename)
Test output file.
 
std::string image_filename(std::string const &filename)
Image filename.
 
void padmm(const std::string &name, const Image< t_complex > &M31, const std::string &kernel, const t_int J, const utilities::vis_params &uv_data, const t_real sigma, const std::tuple< bool, t_real > &w_term)
 
int main(int nargs, char const **args)