30 std::string
const kernel = args[1];
31 t_real
const over_sample = std::stod(
static_cast<std::string
>(args[2]));
32 t_int
const J =
static_cast<t_int
>(std::stod(
static_cast<std::string
>(args[3])));
33 t_real
const m_over_n = std::stod(
static_cast<std::string
>(args[4]));
34 std::string
const test_number =
static_cast<std::string
>(args[5]);
36 std::string
const dirty_image_fits =
41 auto sky_model_max = sky_model.array().abs().maxCoeff();
42 sky_model = sky_model / sky_model_max;
43 t_int
const number_of_vis = std::floor(m_over_n * sky_model.size());
49 auto simulate_measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
51 uv_data.u, uv_data.v, uv_data.w, uv_data.weights, sky_model.cols(), sky_model.rows(), 2,
53 100, 1e-4, Vector<t_complex>::Random(sky_model.size())));
54 uv_data.vis = simulate_measurements * sky_model;
56 auto measurements_transform = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
58 uv_data.u, uv_data.v, uv_data.w, uv_data.weights, sky_model.cols(), sky_model.rows(),
60 100, 1e-4, Vector<t_complex>::Random(sky_model.size())));
62 sopt::wavelets::SARA
const sara{
63 std::make_tuple(
"Dirac", 3u), std::make_tuple(
"DB1", 3u), std::make_tuple(
"DB2", 3u),
64 std::make_tuple(
"DB3", 3u), std::make_tuple(
"DB4", 3u), std::make_tuple(
"DB5", 3u),
65 std::make_tuple(
"DB6", 3u), std::make_tuple(
"DB7", 3u), std::make_tuple(
"DB8", 3u)};
67 auto const Psi = sopt::linear_transform<t_complex>(sara, sky_model.rows(), sky_model.cols());
74 Vector<> dimage = (measurements_transform.adjoint() * uv_data.vis).real();
75 t_real
const max_val = dimage.array().abs().maxCoeff();
76 dimage = dimage / max_val;
77 Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
78 pfitsio::write2d(Image<t_real>::Map(dimage.data(), sky_model.rows(), sky_model.cols()),
84 sopt::algorithm::SDMM<t_complex>()
86 .gamma((measurements_transform.adjoint() * uv_data.vis).real().maxCoeff() * 1e-3)
87 .is_converged(sopt::RelativeVariation<t_complex>(1e-3))
88 .conjugate_gradient(100, 1e-3)
90 sopt::proximal::translate(sopt::proximal::L2Ball<t_complex>(epsilon), -uv_data.vis),
91 measurements_transform)
92 .append(sopt::proximal::l1_norm<t_complex>, Psi.adjoint(), Psi)
93 .append(sopt::proximal::positive_quadrant<t_complex>);
95 Vector<t_complex> result;
96 std::clock_t c_start = std::clock();
97 auto const diagnostic =
sdmm(result, initial_estimate);
99 std::clock_t c_end = std::clock();
100 Image<t_complex> image = Image<t_complex>::Map(result.data(), sky_model.rows(), sky_model.cols());
101 t_real
const max_val_final = image.array().abs().maxCoeff();
102 image = image / max_val_final;
104 Vector<t_complex> original = Vector<t_complex>::Map(sky_model.data(), sky_model.size(), 1);
105 Image<t_complex> res = sky_model - image;
106 Vector<t_complex> residual = Vector<t_complex>::Map(res.data(), image.size(), 1);
108 auto snr = 20. * std::log10(original.norm() / residual.norm());
109 auto total_time = (c_end - c_start) / CLOCKS_PER_SEC;
111 std::ofstream out(results);
113 out << snr <<
" " << total_time;
#define PURIFY_HIGH_LOG(...)
High priority message.
#define PURIFY_CRITICAL(...)
\macro Normal but signigicant condition
#define PURIFY_MEDIUM_LOG(...)
Medium priority message.
const t_real pi
mathematical constant
const std::map< std::string, kernel > kernel_from_string
std::shared_ptr< sopt::LinearTransform< T > > init_degrid_operator_2d(const Vector< t_real > &u, const Vector< t_real > &v, const Vector< t_real > &w, const Vector< t_complex > &weights, const t_uint &imsizey, const t_uint &imsizex, const t_real &oversample_ratio=2, const kernels::kernel kernel=kernels::kernel::kb, const t_uint Ju=4, const t_uint Jv=4, const bool w_stacking=false, const t_real &cellx=1, const t_real &celly=1)
Returns linear transform that is the standard degridding operator.
void write2d(const Image< t_real > &eigen_image, const pfitsio::header_params &header, const bool &overwrite)
Write image to fits file.
Image< t_complex > read2d(const std::string &fits_name)
Read image from fits file.
t_real SNR_to_standard_deviation(const Vector< t_complex > &y0, const t_real &SNR)
Converts SNR to RMS noise.
Vector< t_complex > add_noise(const Vector< t_complex > &y0, const t_complex &mean, const t_real &standard_deviation)
Add guassian noise to vector.
utilities::vis_params random_sample_density(const t_int vis_num, const t_real mean, const t_real standard_deviation, const t_real rms_w)
Generates a random visibility coverage.
t_real calculate_l2_radius(const t_uint y_size, const t_real &sigma, const t_real &n_sigma, const std::string distirbution)
A function that calculates the l2 ball radius for sopt.
std::string output_filename(std::string const &filename)
Test output file.
std::string image_filename(std::string const &filename)
Image filename.