1 #include "purify/config.h" 
    7 #include <boost/math/special_functions/erf.hpp> 
    8 #include "purify/directories.h" 
   13 #include <sopt/power_method.h> 
   14 #include <sopt/relative_variation.h> 
   15 #include <sopt/sdmm.h> 
   16 #include <sopt/utilities.h> 
   17 #include <sopt/wavelets.h> 
   18 #include <sopt/wavelets/sara.h> 
   20 int main(
int nargs, 
char const **args) {
 
   30   std::string 
const kernel = args[1];
 
   31   t_real 
const over_sample = std::stod(
static_cast<std::string
>(args[2]));
 
   32   t_int 
const J = 
static_cast<t_int
>(std::stod(
static_cast<std::string
>(args[3])));
 
   33   t_real 
const m_over_n = std::stod(
static_cast<std::string
>(args[4]));
 
   34   std::string 
const test_number = 
static_cast<std::string
>(args[5]);
 
   36   std::string 
const dirty_image_fits =
 
   41   auto sky_model_max = sky_model.array().abs().maxCoeff();
 
   42   sky_model = sky_model / sky_model_max;
 
   43   t_int 
const number_of_vis = std::floor(m_over_n * sky_model.size());
 
   49   auto simulate_measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
 
   51           uv_data.u, uv_data.v, uv_data.w, uv_data.weights, sky_model.cols(), sky_model.rows(), 2,
 
   53       100, 1e-4, Vector<t_complex>::Random(sky_model.size())));
 
   54   uv_data.vis = simulate_measurements * sky_model;
 
   56   auto measurements_transform = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
 
   58           uv_data.u, uv_data.v, uv_data.w, uv_data.weights, sky_model.cols(), sky_model.rows(),
 
   60       100, 1e-4, Vector<t_complex>::Random(sky_model.size())));
 
   62   sopt::wavelets::SARA 
const sara{
 
   63       std::make_tuple(
"Dirac", 3u), std::make_tuple(
"DB1", 3u), std::make_tuple(
"DB2", 3u),
 
   64       std::make_tuple(
"DB3", 3u),   std::make_tuple(
"DB4", 3u), std::make_tuple(
"DB5", 3u),
 
   65       std::make_tuple(
"DB6", 3u),   std::make_tuple(
"DB7", 3u), std::make_tuple(
"DB8", 3u)};
 
   67   auto const Psi = sopt::linear_transform<t_complex>(sara, sky_model.rows(), sky_model.cols());
 
   74   Vector<> dimage = (measurements_transform.adjoint() * uv_data.vis).real();
 
   75   t_real 
const max_val = dimage.array().abs().maxCoeff();
 
   76   dimage = dimage / max_val;
 
   77   Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
 
   78   pfitsio::write2d(Image<t_real>::Map(dimage.data(), sky_model.rows(), sky_model.cols()),
 
   84       sopt::algorithm::SDMM<t_complex>()
 
   86           .gamma((measurements_transform.adjoint() * uv_data.vis).real().maxCoeff() * 1e-3)
 
   87           .is_converged(sopt::RelativeVariation<t_complex>(1e-3))
 
   88           .conjugate_gradient(100, 1e-3)
 
   90               sopt::proximal::translate(sopt::proximal::L2Ball<t_complex>(epsilon), -uv_data.vis),
 
   91               measurements_transform)
 
   92           .append(sopt::proximal::l1_norm<t_complex>, Psi.adjoint(), Psi)
 
   93           .append(sopt::proximal::positive_quadrant<t_complex>);
 
   95   Vector<t_complex> result;
 
   96   std::clock_t c_start = std::clock();
 
   97   auto const diagnostic = sdmm(result, initial_estimate);
 
   99   std::clock_t c_end = std::clock();
 
  100   Image<t_complex> image = Image<t_complex>::Map(result.data(), sky_model.rows(), sky_model.cols());
 
  101   t_real 
const max_val_final = image.array().abs().maxCoeff();
 
  102   image = image / max_val_final;
 
  104   Vector<t_complex> original = Vector<t_complex>::Map(sky_model.data(), sky_model.size(), 1);
 
  105   Image<t_complex> res = sky_model - image;
 
  106   Vector<t_complex> residual = Vector<t_complex>::Map(res.data(), image.size(), 1);
 
  108   auto snr = 20. * std::log10(original.norm() / residual.norm());  
 
  109   auto total_time = (c_end - c_start) / CLOCKS_PER_SEC;  
 
  111   std::ofstream out(results);
 
  113   out << snr << 
" " << total_time;
 
#define PURIFY_HIGH_LOG(...)
High priority message.
 
#define PURIFY_CRITICAL(...)
\macro Normal but signigicant condition
 
#define PURIFY_MEDIUM_LOG(...)
Medium priority message.
 
const t_real pi
mathematical constant
 
const std::map< std::string, kernel > kernel_from_string
 
std::shared_ptr< sopt::LinearTransform< T > > init_degrid_operator_2d(const Vector< t_real > &u, const Vector< t_real > &v, const Vector< t_real > &w, const Vector< t_complex > &weights, const t_uint &imsizey, const t_uint &imsizex, const t_real &oversample_ratio=2, const kernels::kernel kernel=kernels::kernel::kb, const t_uint Ju=4, const t_uint Jv=4, const bool w_stacking=false, const t_real &cellx=1, const t_real &celly=1)
Returns linear transform that is the standard degridding operator.
 
void write2d(const Image< t_real > &eigen_image, const pfitsio::header_params &header, const bool &overwrite)
Write image to fits file.
 
Image< t_complex > read2d(const std::string &fits_name)
Read image from fits file.
 
t_real SNR_to_standard_deviation(const Vector< t_complex > &y0, const t_real &SNR)
Converts SNR to RMS noise.
 
Vector< t_complex > add_noise(const Vector< t_complex > &y0, const t_complex &mean, const t_real &standard_deviation)
Add guassian noise to vector.
 
utilities::vis_params random_sample_density(const t_int vis_num, const t_real mean, const t_real standard_deviation, const t_real rms_w)
Generates a random visibility coverage.
 
t_real calculate_l2_radius(const t_uint y_size, const t_real &sigma, const t_real &n_sigma, const std::string distirbution)
A function that calculates the l2 ball radius for sopt.
 
std::string output_filename(std::string const &filename)
Test output file.
 
std::string image_filename(std::string const &filename)
Image filename.
 
int main(int nargs, char const **args)